

This PIN Can Be Easily Guessed

Analyzing the Security of Smartphone Unlock PINs

Philipp Markert, Daniel V. Bailey, Maximilian Golla, Markus Dürmuth, and Adam J. Aviv

Overview

Why PINs?

Fingerprint

Who uses PINs?

1220 participants

461 do not use a biometric

759 use a biometric

Overall 805 (66\%) use a PIN

What we know about PINs

- User chosen 4-digit PINs are predictable [1]
- User chosen 6-digit PINs aren't any better [2]
- Blacklisting popular PINs can increase security [1]

What we don't know

- How secure are 4- or 6-digit PINs in the smartphone unlock setting?
- What are the effects of different blacklists on the security of PINs?
- How to balance security and usability when composing a blacklist?

Treatments

Placebo	iOS
"Test general effect of warning"	"Test effect of iOS blacklists"
Blacklist:	Blacklist:
"1st choice" blocked	274 PINs (4-digit)
- Any other PIN allowed	$\bullet 2910$ PINs (6-digit)

[^0]

User Study

Create a 4-digit PIN

A PIN protects your data and is used to unlock your smartphone.

This PIN Can Be Easily Guessed
Your PIN will be used to unlock your smartphone and to protect access to your data.

Change PIN

7	8	9
PQRS	TUV	WYYZ
\boxed{x}	0	CLEAR

User Study

Attacker Model

5 - No information about the victim

Attacker Model

- No information about the victim

Rank	4-digit PINs	6-digit PINs
1	1234	123456
2	0000	123123
3	2580	111111
\vdots	\vdots	\vdots

Attacker Model

5 - No information about the victim

Attacker Model

- No information about the victim

Research Questions

4 vs. 6 RQ1: How secure are 4 - and 6-digit PINs in the smartphone unlock setting?

RQ2: What are the effects of different blacklists on the security of PINs?

RQ3: How to balance security and usability when composing a blacklist?

RQ1: 4- vs. 6-digit PINs

$$
\begin{array}{|cc|}
\hline \triangle & \text { 4-digit PINs } \\
- & \text { 6-digit PINs } \\
\hline
\end{array}
$$

Observations:

- Overall comparable security of 4 - and 6-digit PINs in the defined attacker model
- Differences depending on the number of guesses

RQ2: Different Blacklist Sizes

$-\triangle$ iOS (274 PINs blacklisted)
$-\times$ Data-Driven Small (27 PINs blacklisted)
$-\quad$ Data-Driven Large (2740 PINs blacklisted)

Observations:

- iOS and Data-Driven Small offer comparable security
- Data-Driven Large drastically increases the security
- Blacklist Hitrate:

DD Small 5\%

```
iOS 15%
```

DD Large 70\%

RQ3: Balancing Security and Usability

Observations:

- Different extrema throughout the curve
- Maxima: users choose popular PINs
- Minima: users choose unpopular PINs
- Blacklisting $\sim 10 \%$ is ideal

Takeaways

\gtrsim philipp.markert@rub.de

[^0]: Data-Driven (DD)
 "Test effect of different blacklist sizes"

 Blacklist:

 - Top 27 PINs of Amitay (small)
 - Top 2740 PINs of Amitay (large)

